Lighter-Communication Distributed Machine Learning via Sufficient Factor Broadcasting
نویسندگان
چکیده
Matrix-parametrized models (MPMs) are widely used in machine learning (ML) applications. In large-scale ML problems, the parameter matrix of a MPM can grow at an unexpected rate, resulting in high communication and parameter synchronization costs. To address this issue, we offer two contributions: first, we develop a computation model for a large family of MPMs, which share the following property: the parameter update computed on each data sample is a rank-1 matrix, i.e. the outer product of two “sufficient factors” (SFs). Second, we implement a decentralized, peer-to-peer system, Sufficient Factor Broadcasting (SFB), which broadcasts the SFs among worker machines, and reconstructs the update matrices locally at each worker. SFB takes advantage of small rank-1 matrix updates and efficient partial broadcasting strategies to dramatically improve communication efficiency. We propose a graph optimization based partial broadcasting scheme, which minimizes the delay of information dissemination under the constraint that each machine only communicates with a subset rather than all of machines. Furthermore, we provide theoretical analysis to show that SFB guarantees convergence of algorithms (under full broadcasting) without requiring a centralized synchronization mechanism. Experiments corroborate SFB’s efficiency on four MPMs.
منابع مشابه
Distributed Machine Learning via Sufficient Factor Broadcasting
Matrix-parametrized models, including multiclass logistic regression and sparse coding, are used in machine learning (ML) applications ranging from computer vision to computational biology. When these models are applied to large-scale ML problems starting at millions of samples and tens of thousands of classes, their parameter matrix can grow at an unexpected rate, resulting in high parameter s...
متن کاملLarge Scale Distributed Multiclass Logistic Regression
Multiclass logistic regression (MLR) is a fundamental machine learning model to do multiclass classification. However, it is very challenging to perform MLR on large scale data where the feature dimension is high, the number of classes is large and the number of data samples is numerous. In this paper, we build a distributed framework to support large scale multiclass logistic regression. Using...
متن کاملSVM via Saddle Point Optimization: New Bounds and Distributed Algorithms
Support Vector Machine is one of the most classical approaches for classification and regression. Despite being studied for decades, obtaining practical algorithms for SVM is still an active research problem in machine learning. In this paper, we propose a new perspective for SVM via saddle point optimization. We provide an algorithm which achieves (1 − )-approximations with running time Õ(nd +...
متن کاملAsynchronous Distributed Data Parallelism for Machine Learning
Distributed machine learning has gained much attention due to recent proliferation of large scale learning problems. Designing a high-performance framework poses many challenges and opportunities for system engineers. This paper presents a novel architecture for solving distributed learning problems in framework of data parallelism where model replicas are trained over multiple worker nodes. Wo...
متن کاملdmapply: A functional primitive to express distributed machine learning algorithms in R
Due to R’s popularity as a data-mining tool, many distributed systems expose an R-based API to users who need to build a distributed application in R. As a result, data scientists have to learn to use different interfaces such as RHadoop, SparkR, Revolution R’s ScaleR, and HPE’s Distributed R. Unfortunately, these interfaces are custom, nonstandard, and difficult to learn. Not surprisingly, R a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016